مدلسازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی
Authors
Abstract:
در این مطالعه آزمایشهای مزرعهای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنههای متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتیمتر، سرعتهای پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگینکننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکههای عصبی مدلسازی شده در این تحقیق که به منظور پیشبینی بازده کششی تراکتور مورد استفاده قرار گرفتند از نوع شبکههای چند لایه پسانتشار برگشتی بودند. نتایج این تحقیق نشان داد که شبکه عصبی توسعه داده شده با الگوریتم LMنسبت به الگوریتم SCG عملکرد بهتری دارد. مقدار خطای RMSE و ضریب تبیین R2به دست آمده در این مطالعه برای بازده کششی به ترتیب عبارت است از 010828/0 و 99163/0. نتیجه مدلسازی نشان داد که دادههای پیشبینی شده توسط شبکه عصبی مصنوعی خیلی نزدیک به دادههای واقعی به دستآمده از آزمایشهای مزرعهای میباشد. بنابراین میتوان مدل به دست آمده را در مواقعی که امکان اندازهگیری وجود نداشته باشد، بهخدمت گرفت.
similar resources
مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی
مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...
full textپیشبینی ارتباط بین بازده سهام و عدم تقارن اطلاعاتی با استفاده از شبکه-های عصبی مصنوعی
با توجه به اهمیت بازده در مطالعات سرمایهگذاری، برآورد رابطهی آن با عدم تقارن اطلاعاتی از مسائل مهم و ضروری است. تغییرات زمانی بازده، عدم کفایت مطالعات صورت گرفته و وجود عوامل تاثیرگذار بر میزان بازده سهام باعث توسعهی روشهای نوین و هوشمند در تخمین و برآورد بازده سهام شرکتهای بورسی شده است. هدف از این تحقیق پیشبینی بازده سهام با استفاده از عدم تقارن اطلاعاتی با رویکرد شبکههای عصبی مصنوعی ...
full textمدلسازی غلظت تری هالومتان در آب شرب با استفاده از شبکه عصبی مصنوعی
در این مطالعه جهت مدل سازی میزان غلظت تری هالومتان در آب شرب، از شبکه عصبی مصنوعی استفاده شده است. پس از آموزش، شبکه عصبی قادر است براساس مشخصات کیفی آب و میزان غلضت کلر در آب شرب، میزان غلظت تری هالومتان را پیش بینی کند. جهت ارزیابی و تشریح مدل، آب تصفیه خانه سنگر واقع در شهرستان رشت به صورت موردی بررسی شده است. از اندازه گیری های انجام یافته بر روی آب شرب تصفیه خانه سنگر، داده های مورد نیاز،...
full textمدلسازی منطقهای دبیهای اوج در زیر حوزههای آبخیز سد سفیدرود با استفاده از شبکه عصبی مصنوعی
The model in this research was created based on the Artificial Neural Network (ANN) and calibrated in the Sefid-rood dam basin (excluding Khazar zone). This research was done by gathering and selecting peak flows of hydrographs from 12 sub basins, the concentration time of which was equal to or less than 24 hours and was caused only by rainfall. From all the selected sub basins, totally 661 hyd...
full textمدلسازی و شبیهسازی بیوسنسور آنزیمی برای تشخیص آفلاتوکسین B1 با استفاده از شبکه عصبی مصنوعی
افلاتوکسین B1 (AFB1) سمی ترین گروه آفلاتوکسینهاست که باعث آلودگی محصولات کشاورزی شده و اثرات مرگ باری بر سلامت انسان دارد. تشخیص AFB1 در مواد غذایی و خوراکی توسط بیوسنسورها سریع، کم هزینه و دقیق است. در این مقاله به مدلسازی و شبیهسازی واکنشهای شیمیایی در بیوسنسور پتانسیومتری AFB1 جهت تعیین ثابتهای بهینه نرخ واکنش پرداخته شده است. شبیهسازی واکنشهای شیمیایی توسط نرم افزار COMSOL...
full textMy Resources
Journal title
volume 3 issue 1
pages 35- 50
publication date 2016-08-22
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023